TECHNICAL MANUAL

FOR

AFFORD ABLE
\section*{MICRO-IRRIGATION}
TECHNOLOGY

(AMIT)

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1 W hat is M icro Irrigation? 1
1.2 W hat is AM IT / Low-Cost D rip Irrigation Kit? 1
2. Advantages of AM IT 2
3. Basic C omponents of AM IT System 3-6
4. Types of AMIT Kits 7-12
4.1 M icrotube Drip Kit 8
4.2 Baffle Drip Kit 10
4.3 M icro Sprinkler Kit: 11
5. Customization of AM IT Kits 12
5.1 Adjusting Length of Lateral Pipe: 12
5.2 U se of U pgrade Kit: 12-13
5.3 U se of Additional D rip K it 13-23
6. D esign of D rip System 14
6.1 D esign Inputs: 14
6.2 D esign O utputs 14
6.3 Survey 15
6.4 W ater Requirement 16-17
6.5 Irrigation Scheduling: 17
6.6 Selection of Emitter: 117-18
6.7 D esign of Lateral: 19-20
6.8 D esign of Submain 21-22
6.9.D esign of M ainline: 22
6.10 Selection of Filter: 23
6.11 Selection of Pump: 23
7. Installation and Commissioning 24-25
8. M aintenance and Troubleshooting 26-27
9. Frequently asked Q uestions 28-29
10. Appendix 30-31
10.1 G lossary 30
10.2 References 31

INTRODUCTION

W hat is M icro Irrigation?

Slow \& regular application of water directly to the root zone of plants through network of economically designed plastic pipes and low discharge emitters.

W hat is Affordable M icro Irrigation Technology (AMIT) / Low C ost D rip Irrigation (LCDI) Kit?

Network of plastic pipes with emitters assembled and packaged for small plots along with user-friendly instruction manual for small holders to enable them to cultivate commercial crops.

M icro Irrigation is an ideal way to produce high value crops as it reduces water use, increases crop yield and gives good quality produce within less time and money as compared to traditional ways of cultivating and irrigating commercial crops. H owever majority of the small holders in developing countries are deprived of this amazing technology due to its high initial cost and non-adaptability to small holdings. Until recently it has been too expensive to be affordable for poor families and too large for tiny plots of land. International D evelopment Enterprises (IDE), a non-profit voluntary organization has now overcome this problem by developing range of small and easy to use affordable micro irrigation kits to produce high value crops.

IDE has been working on low cost micro irrigation technology in India and Nepal since 1995 and in has developed range of products and configurations for small holders. T hese products are in the form of ready-touse kits, assembled and packaged so that they can be sold off-the-shelf, installed and used by the farmers on their own. M ost of the components in a typical low cost micro irrigation system are manufactured from polyvinyl chloride, different types of polyethylene and polypropylene. IDE has found that manufacturing technology is based on simple extrusion or injection molding process and manufacturers of plastic pipes can adapt it easily. W hile working in India, N epal, Vietnam and China, ID E observed that affordable micro irrigation technology enables small holders to cultivate cash crop with small amount of water and increase crop intensity. This enables them to increase their incomes two to three times more as compared to income from traditional crops. Farmers can also increase their area under irrigation by using AM IT system with available water.

This manual aims at providing skills and knowledge base to support an ever-growing network of institutional efforts for the dissemination of AM IT. It can also be used in-group training courses for professional / technical staff of implementing organizations, supply chain and training of farmers regarding AM IT.

ADVANTAGES OF AMIT

Some of the major advantages of AM IT are given below:

1. Affordability : AM IT Systems are available in affordable sizes from local suppliers at low price as compared to other costly irrigation systems.
2. Improved Yield : Slow and regular application of water and nutrients uniformly to all the plants gives improved quality and increase in total produce.
3. Water Saving : There is saving of water up to 50% as compared to traditional method. So AM IT can give more crop (area) per unit of water used.
4. Labor Saving : Less labor is required for irrigation, weeding, fertilizer application etc. incase of AM IT as compared to traditional method.
5. Fertilizer Saving : Fertilizer losses are minimized in AM IT. So there is saving in fertilizer application as compared to traditional method of irrigation.
6. Energy Saving : M ost of the AM IT Kits are gravity operated systems or run with low horse power pump.
7. D ifficult Terrain : AM IT can be used on undulated terrain (hilly area) where irrigation by traditional method is difficult.
8. Tolerance to Salinity : Due to slow and regular application of water by AM IT concentration of salts in the root zone is reduced and by micro leaching salts are kept away from the root zone.
9. Improved C rop and D isease Control : Regular irrigation ensures timely inter-culturing operations and spraying etc. which gives better crop control and prevents spread of diseases caused due to flooding.
10. Uniform Application of Water : Since water is applied uniformly to all the plants, there is uniformity in growth and quality of yield.
11. Reduced Cultivation C ost : Slow and regular application of water keeps optimum soil-water-air ratio in the soil which is essential for healthy plant growth. It also reduces need for frequent interculturing, weeding etc. Combined with above saving it gives reduced cost of cultivation.
12. Application to Variety of C rops : N umber of crops can be irrigated using AM IT viz. Vegetable crops, fruit crops, commercial cash crops, flowers etc.

BASIC COMPONENTSOF AMIT SYSTEM

A typical AM IT System will contain each of the following components:

1. Water Source: The AM IT Kit is a low-pressure system that uses gravity to increase water pressure. The water source can be an overhead tank placed at a minimum of one meter above ground level for smaller systems up to $400 \mathrm{~m}^{2}$ area. For larger systems, the height of the tank should be increased. If the height of the tank is not increased the system can be connected to a pump that lifts water from sources such as a well, farm pond, storage tank, or a stream / canal. A manually operated pressure pump also can be used to lift water from a shallow water table (up to 7 meters) and used for AM IT kits.
2. C ontrol Valve: Valve made of plastic or metal to regulate required pressure and flow of water into the system. There are valves of various sizes depending on flow rate of water in the system.

3. Filter: Strainer filter to ensure that clean water enters into the system. There are different types of filters viz. Screen, media and disc type filters. D ifferent sizes of filters are avai lable depending on flow rate of water in the system.

4. M ainline: Poly vinyl chloride (PVC) or Polyethylene (PE) pipe to convey water from source to the sub-main. Polyethylene pipe material is normally made from H D PE, LDPE and LLD PE. Size of pipe depends on flow rate of water in the system.

5. Sub-main: PVC / HDPE / LDPE / LLDPE pipe to supply water to the lateral pipes. Lateral pipes are connected to the sub-main pipe at regular intervals. Size of pipe depends on flow rate of water in the system.

6. Lateral: LLDPE / LD PE Pipes placed along the rows of the crop on which emitters are connected directly or through spaghetti to provide water to the emitters. The lateral pipe size is from 12 mm to 16 mm in most of the drip systems.
7. Emitters: D evice through which water is emitted at the root zone of the plant with required discharge. Different types of emitters used in AM IT Kits are described below:

i) Micro-tube: Straight or curled LLDPE tube with an inner diameter ranging from 1 to 1.2 mm . The discharge from the micro-tube is directly proportional to the operating pressure and inversely proportional to its length. The operating pressure that is required can be as low as 1 m to 5 m .

ii) Baffle: Thehole on the lateral pipe is 0.75 mm in diameter. This hole is covered with a plastic device called baffle so that water is discharged using a desired flow at a given pressure. O perating pressure required is as low as 1 m to 5 m .
iii) M icro-Sprinkler : The sprinkler is able to spray water with coverage of 3 to 4 m in radius. It has a small rotating device to cover larger areas. O perating pressure required is from 5 m to 15 m .
iv) Drip Tape/Easy D rip: It has inbuilt drippers/ outlets on the lateral line which give a continuous wetting strip. It is mainly used for row crops. O perating pressure required is from 1 m to 5 m .
8. Fittings: Various fittings required in AM IT System are described below.

i) Tee C onnector: Tee C onnectors of various sizes are required in AM IT system to connect a branch to the M ain pipe, M ain pipe to Sub-main pipes, Lateral Pipes to Sub-main pipes etc. TheTee Connectors can be Equal Tee or Reducing type Tee viz. $12 \mathrm{~mm} \times 12 \mathrm{~mm}, 16 \mathrm{~mm} \times 12 \mathrm{~mm}, 16 \mathrm{~mm}$ $\times 16 \mathrm{~mm}, 25 \mathrm{~mm} \times 12 \mathrm{~mm}, 32 \mathrm{~mm} \times 12 \mathrm{~mm}$ etc.

ii) Straight C onnector: Also called as Joiner. It is required to connect pipes. It can be Equal Joiner or Reducing Joiner viz. $12 \mathrm{~mm} \times 12 \mathrm{~mm}, 12 \mathrm{~mm} x$ $16 \mathrm{~mm}, 25 \mathrm{~mm} \times 32 \mathrm{~mm}, 32 \mathrm{~mm} \times 40 \mathrm{~mm}, 40 \mathrm{~mm}$ $x 50 \mathrm{~mm}$ etc.

iii) Take-O ff: It is used to connect lateral pipes to the sub-main pipe in larger systems. It is fixed in the wall of sub-main pipe with the help of a rubber washer called as Gromate. It is available for different sizes of lateral pipes viz., $12 \mathrm{~mm}, 16 \mathrm{~mm}$.

iv) Lateral End Stop: The lateral pipes are closed at the other end with the help of plastic ring in the shape of figure of ' 8 ', or barbed End Cap. It is available for different sizes of pipes viz. 12 mm , 16 mm etc.

v) Micro-Tee: It is used to connect M icro-tube to the lateral pipe. Simply inserting it into the lateral pipe and tying a knot around the lateral pipe can also connect the Micro-tube. M icro-tee makes it simple and easy for assembling purpose as well as to dissemble the system and pack it after harvest.
vi) Pegs: Small plastic pegs are used to place the micro-tube and lateral pipe in place. The pegs for micro-tube are mostly used in M icro-tube drip kit while pegs for laterals are used in baffle drip kits for shifting of laterals.

vii) Stakes: M icro-Sprinklers are mounted on 12" or $18^{\prime \prime}$ long plastic / metal stakes and micro-sprinkler are connected to lateral pipes through extension / spaghetti tube of 6 mm diameter.

TYPES OF AMIT SYSTEMS

ID E started working with low cost drip in India and N epal simultaneously and developed different AM IT Kits depending on local industry, raw material for plastic products and farmers acceptance. The AM IT Systems can be classified in to three main categories, based on emitter type, as given below :

1. M icro-tube D rip System (N on shiftable)
2. Baffle Drip System (Shiftable)
3. M icro-Sprinkler System (Shiftable)

D epending on area covered / number of plants and type of crop, packaged kits were developed for above mentioned each main category. These kits can be upgraded or combined to form larger systems by using some additional fittings and accessories. Following table shows different types of AM IT Kits and area that can be covered with each type and approximate cost of the kit.

Micro tube D rip (M T D) System (N on Shiftable)			Baffle Drip Kit (BDK) - (Shiftable)			M icro Sprinkler System (Shiftable)		
Type of Kit	$\begin{aligned} & \text { Area } \\ & \text { Sq.m } \end{aligned}$	Cost US\$	Type of Kit	$\begin{aligned} & \text { Area } \\ & \text { Sq.m } \end{aligned}$	Cost US\$	Type of Kit	$\begin{aligned} & \text { Area } \\ & \text { Sq.m } \end{aligned}$	Cost US\$
Bucket Kit / M icro-tube D rip Kit (MTD 20)	20	6	Small Baffle Drip Kit (BD K125)	125, with one shift	15	Micro Sprinkler Kit - M S2	125 with five shift	6
Drum Kit / Micro-tube D rip Kit (MTD 100)	100	20	M edium Baffle Drip Kit (BD K250)	250 with one shift	20	Micro Sprinkler Kit - M S4	250 with five shift	10
M icro-tube D rip Kit (MTD 500)	500	80	Large Baffle Drip Kit (BD K500)	500 with one shift	30	Micro Sprinkler Kit - M S8	500 with five shift	15
Q uarter Acre Drip Kit (MTD 1000)	1000	130	Upgrade kit for small \& medium BHD Kits		$7 \text { \& }$ 12 resp.	Micro Sprinkler Kit - M S16	1000 with five shift	25

Each AM IT K it is specific in application depending on area, type of crop, soil, water source etc. The salient features are given below along with diagrams.

4.1 M icro-tube D rip System (Non Shiftable):

4.1.1 Bucket Kit / M icro-tube D rip Kit (MT D 20)

4.1.2 D rum Kit / M icro-tube D rip Kit (MTD 100)

4.1.3 Salient Features of M icro-tube D rip Kits:

Specification	Bucket Kit / Micro-tube Drip Kit (M T D 20)	D rum Kit M icro-tube Drip Kit (MTD 100)	M icro-tube Drip Kit (MTD 500)	Q uarter Acre kit / M icro-tube D rip Kit (MTD 1000)
Area C overage	20 sq. meter	100 sq. meter	500 sq. meter	1000 sq. meter
Type of Emitter	M icro-tube 1.2 mm I.D., 60 cm long	M icro-tube 1.2 mm I.D., 60 cm long	M icro-tube 1.2 mm I.D. 60 cm long	M icro-tube 1.2 mm I.D., 60 cm long
No. of Emitters/ Micro-tubes	$60 / 30$	$300 / 150$	1500 / 750	3000 / 1500
Emitter / M icro -tube Spacing	$30 \mathrm{~cm} / 60 \mathrm{~cm}$			
Type of Lateral	$\begin{aligned} & \text { LLD PE } \\ & 12 \mathrm{~mm} 0 . \mathrm{D} . \end{aligned}$	$\begin{aligned} & \text { LLDPE } \\ & 12 \mathrm{~mm} 0 . \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { LLD PE } \\ & 12 \mathrm{~mm} \text { O.D. } \end{aligned}$	$\begin{aligned} & \text { LLD PE } \\ & 12 \mathrm{~mm} \text { O.D. } \end{aligned}$
Lateral Length	5.0 m	9 m	16 m	16 m on each side of the sub-main
No. of Laterals	2	5	16	32
Lateral Spacing	2 m	2 m	2 m	2 m
Type of SubM ain	$\begin{aligned} & \text { LLD PE } \\ & 12 \mathrm{~mm} 0 . \mathrm{D} . \end{aligned}$	$\begin{aligned} & \text { LLDPE } \\ & 16 \mathrm{~mm} 0 . \mathrm{D} . \end{aligned}$	$\begin{aligned} & \text { LLD PE } \\ & 32 \mathrm{~mm} \text { O.D. } \end{aligned}$	$\begin{aligned} & \text { LLDPE } \\ & 32 \mathrm{~mm} 0 . \mathrm{D} . \end{aligned}$
Sub-main Length	1.8 m	10 m	32 m	32 m
Filter	Screen Filter (12 mm inlet \& outlet size)	Screen Filter (16 mm inlet \& outlet size)	Screen Filter (25 mm inlet \& outlet size)	Screen Filter (25 mm inlet \& outlet size)
O perating Head/ Height of Tank	1 meter	1 meter	2 meter	2 meter
Emitter Flow	2.5 lit / hour	2.2 lit / hour	2.4 lit / hour	2.2 lit / hour
Water Storage	20 liters	200 liters	1000 liters	2000 liters
Crops	Tomato, Egg Plant, O nion, C abbage, Rape Seed, Paprika, Cauli-Flower, Garlic, WaterM elon, Cucumber, Lettuce etc. vegetable crops.		Tomato, Egg Plant, O nion, C abbage, Rape Seed, Paprika, C auli-Flower, Garlic, Water M elon, Cucumber, Lettuce etc. vegetable crops and also fruit crops viz. banana, papaya, pomegranate, citrus, mango etc with required modifications.	

4.2 Baffle D rip System (Shiftable):

4.2.1 Layout of Small Baffle D rip System:

4.2.2 Salient Features of B affle D rip System:

Specification	Small BDK	Medium BDK	Large BDK
Area C overage	125 sq. meter with one shift	250 sq. meter with one shift	500 sq. meter with one shift
Type of Emitter	0.75 mm dia. H ole covered with Baffle	0.75 mm dia. H ole covered with Baffle	0.75 mm dia. H ole covered with Baffle
N o. of Emitters	80	160	320
Emitter Spacing	60 cm	60 cm	60 cm
Type of Lateral	PVC $8 \mathrm{~mm} 0 . \mathrm{D}$	PVC 8 mm O.D.	PVC 8 mm O.D.
Lateral Length	12 m	12 m	12 m
No. of Laterals	4	8	16
Lateral Spacing	2.7 m	2.7 m	2.7 m
Type of Sub-main	PVC 14 mm O.D.	PVC 14 mm O.D.	PVC 14 mm O.D.
Sub-main Length	10 m	20 m	40 m
Filter	Jerry-can Strainer with two layers of 100 mesh N ylon net	Jerry-can Strainer with two layers of 100 mesh N ylon net	Jerry-can Strainer with two layers of 100 mesh N ylon net
O perating Head/ Height of Tank	1 meter	1.5 meter	1.5 meter
Emitter Flow	2.5 lit / hour	2.5 lit / hour	2.5 lit / hour
Water Storage	50 to 100 liters	100 to 200 liters	200 to 400 liters
Type of crops	Vegetable crops	Vegetable crops	Vegetable crops

4.3 M icro-Sprinkler System (shiftable):

4.3.1 Layout of M SK-15 Kit:

4.3.1 Salient Features of M icro-Sprinkler System:

Specification	M icro Sprinkler Kit - M SK2	M icro Sprinkler Kit - M SK 4	M icro Sprinkler Kit - M SK8	M icro Sprinkler Kit - M SK 15
Area C overage	$100 \text { sq. m }$ with five shifts	$200 \text { sq. m }$ with five shift	$400 \text { sq. m }$ with five shift	800 sq. m with five shift
Type of Emitter	M icro Sprinkler	M icro Sprinkler	M icro Sprinkler	M icro Sprinkler
No. of Emitters	2	4	8	15
Emitter Spacing	3 m	3 m	3 m	3 m
Type of Lateral	LLDPE 12mm/ PVC 14 mm	LLDPE 12 mm/ PVC 14	LLD PE 12 mm/ PVC 14 mm	LLD PE 12 mm/ PVC 14 mm
Lateral Length	6 m	12 m	12 m	12 m
No. of Laterals	1	1	2	5
Lateral Spacing	-	-	3 m	3 m
Sub-M ain Size	-	-	LLDPE 16 mm	LLDPE 16 mm
Sub-main Length	-	-	6 m	15 m
Filter	$\begin{aligned} & \text { Screen Filter } \\ & 0.5-1 \mathrm{~m} 3 / \mathrm{hr} \end{aligned}$	Screen Filter $0.5-1 \mathrm{~m} 3 / \mathrm{hr}$	$\begin{aligned} & \text { Screen Filter } \\ & 0.5-1 \mathrm{~m} 3 / \mathrm{hr} \end{aligned}$	$\begin{aligned} & \text { Screen Filter } \\ & 0.5-1 \mathrm{~m} 3 / \mathrm{hr} \end{aligned}$
Operating H ead	5m-10m	$5 \mathrm{~m}-10 \mathrm{~m}$	$5 \mathrm{~m}-10 \mathrm{~m}$	$5 \mathrm{~m}-10 \mathrm{~m}$
Emitter Flow	30-40lph	30-40 lph	30-40lph	30-40lph
Type of crops	Vegetables, Flowers,	Seedling N ursery		

CUSTOMIZATION OF AMIT KITS

AM IT Kits have standard sizes and are suited for small plots with fixed dimensions. But farmer may have plots of varied size and dimension. In that case AM IT Kit can be customized for particular farmer plot or changed to increase / reduce the area covered as per farmer's need. It can be done in following ways:

1. Adjusting length of the lateral pipes.
2. U sing upgrade kit to increase area coverage.
3. Connecting additional kits to the same water source.
4. M aking tailor made system using simple rules.

5.1 Adjusting length of the lateral pipe:

Using AM IT kit for smaller area than specified size, it can be done easily by closing the emitters or reducing lateral / sub-main length by using end cap. Incase of using the kit for larger area, it can be done by increasing lateral length or connecting additional laterals to the sub-main along with increase in pressure head (height of water tank). H owever it should be in accordance with the specified limits so that desired water distribution uniformity is not affected. Following table gives length that can be increased with corresponding increase in the height of the water source. Water storage also needs to be modified to suite the area covered or frequency of filling has to be increased.

Type of Kit	Length of $\mathbf{1 2 m m L a t e r a l ~ a t ~ D i f f e r e n t ~ P r e s s u r e ~ H ~ e a d s ~ (T a n k ~ H ~ e i g h t) ~}$				
	1 mHead	1.5 m Head	2.0 m Head	2.5 m Head	3.0 m Head
Bucket Kit (M TD 20)	12	16	20	24	26
Drum Kit (MTD 100)	10	14	18	22	25
M icro-tube Drip Kit (M TD500)	-	-	16	20	24
Q uarter Acre Kit (M TD 1000)	-	-	16	19	22

5.2 U sing upgrade kit to increase area coverage'

Ready made upgrade kits are available incase of small and medium baffle hole drip systems. By using the upgrade kit, small BHD system can be converted into medium system and medium BHD system in to large system. Following table gives details of area covered by connecting upgrade kit.

Type of Kit	Area covered with original Kit (sq. m)	Area covered after connecting upgrade kit (sq. m)
Small BH D Kit	125	250
M edium BH D Kit	250	500

5.3 C onnecting additional kits to the same water source:

For larger area AM IT drip kits can be clubbed together to irrigate required area. On a single source, up to four kits can be easily put together around the water tank, provided it has enough storage capacity (or refilling available) for all the kits. Following table gives area covered by addition of kits.

Type of Kit	Area under one kits (sq.m)	Area under two kit (sq.m)	Area under three kits (sq.m)	Area under four kits (sq.m)
Bucket Kit (M TD 20)	20	40	60	80
D rum Kit (M TD 100)	100	200	300	400
M icro-tube D rip				
Kit- M TD 500	500	1000	1500	2000
Q uarter Acre Kit-M TD 1000	1000	2000	3000	4000
Small BD K	125	250	500	750
M edium BD K	250	1500	2000	
Large BD K	500			

DESIGN OF MICRO IRRIGATION SYSTEM

6.1 D esign Inputs:

AM IT kits are designed to provide high irrigation efficiency and uniform distribution of water and nutrients for high value crops as compared to conventional flood irrigation system. Incase a larger system is required by the farmer tailor made to his field conditions it can be designed within allowable discharge variation limit by using following procedure. The inputs required to make a good design of micro irrigation system are as follows:

1. Layout of the area.
2. Details of the water source and soil type.
3. Agronomical details (plant spacing, crop period, season, canopy, etc)
4. Climatic data (rainfall, temperature, evapo-transpiration etc).

A survey questionnaire is provided in the annexure, which can be used to get specific information on above inputs. All the information is not required for designing basic layout of AM IT System and determining pipe sizes. H owever by using above information complete micro irrigation system can be designed which will give following outputs :

6.1 D esign 0 utputs:

1. Detail layout of the system in the field.
2. Emitter selection and placement.
3. Size and length of mainline, sub main and lateral pipes.
4. Pumping and filtration requirement.
5. Operating Schedule (Irrigation Scheduling).
6. Bill of material and cost estimate.

System design starts with selection of suitable emitter depending on type of crop, water requirement, operating time, soil type, water quality etc. Length and size of lateral is determined from the table based on lateral flow rate, field size etc. Similarly size and length of sub main is determined. Each sub main is individual unit with a control valve. Whole area is then divided in to different sub main units and number of sub main units operating at a time are selected based on existing pumping / water source capacity. Each operating section is decided so that discharge is more or less similar for all the sections. The mainline is then planned connecting all the sub mains by taking shortest possible route and its size is determined from the table based on the flow rate so that frictional head loss is with in limit and total pressure head required for the system is within pump / water source capacity. If there is no pump then pump requirement is worked out from total discharge and pressure head required for the system. D epending on flow rate and water quality suitable filtration device is selected. Total quantity of all the components is calculated from the layout to prepare bill of quantity and cost estimate.

6.3 Survey:

To prepare accurate layout of any area (size, shape and slope), survey inputs that are required to make a layout (e.g. ABCD) for design of micro irrigation system are described as given below:

1. Straight distance: between points at the corners (e.g. $A B, B C, C D \& D A$). It can be measured with a tape in a straight line with corner points duly identified by putting stones or sticks.
2. Angle at the corner: For three cornered area distances of three sides is enough to make the layout. For four-cornered area any one angle has to be measured along with distances of the sides. For five cornered figure two consecutive angles will be required and so on for multiple sides. Distance of 10 meters is marked from the corner on each line forming the angle and then a tie length is measured between these points. The angle then can be determined from the table for tie length and corresponding angle as given in the annex.
3. Elevation: Slope of the ground surface may be judged with naked eye for small plots wherever possible and taken in to consideration while designing the drip system. If the ground surface is too undulating and slope is difficult to be judged by naked eye, then levels should be taken with leveling instrument and contours drawn on the map to make proper design of the drip system.
4. Water Source: Position of water source (Tank, well, reservoir, pond, river, stream, existing pump, pipe line etc) should be marked on the map and following details should be noted.
a) Size, Volume, flow rate etc. of water source and its height above ground level or depth from ground surface.
b) Pump details for existing pump viz. suction, delivery, actual discharge \& head, operating time, pump H P, expected discharge \& head etc.
c) Quality of water, impurities in water (algae, sand /silt etc.). If water analysis report is available it should be enclosed with the survey report or if possible farmer should try to get it analyzed from local laboratory.
5. Agro-climatic details: The details of existing crops or crops to be planted should be noted viz. specific area under particular area, crop spacing (plant to plant distance x row to row distance), no. of plants and no. of rows, crop duration, expected canopy, rainfall, evapo-transpiration etc.
6. Soil details: The details of soil quality visible to naked eye should be noted viz. heavy soil or light soil depending on soil texture(proportion of clay, silt \& sand). If soil analysis report is available it should be enclosed with the survey report or farmer try to get it analyzed from local laboratory.
7. Permanent details: like farm house, large tree, huge rock etc. should be marked by taking angular measurements from minimum two points so that it can be plotted accurately on the survey plan.
8. Survey Plan: From above information (1 to 6) plan of the area surveyed can be prepared on 1: 1000 scale. For smaller area scale can be used depending on size of the area. D esign of drip system (lay out) can be prepared on this plan and then it can be used for installation purpose.

6.4 Water Requirement:

Water Requirement of plants depends on many factors viz. temperature, humidity, soil type, wind velocity, growth stage, shade / sun etc. Plants absorb soil moisture and transpire it to the atmosphere during the process of photosynthesis. Some amount of water is retained in the plant tissue and rest of the soil moisture gets evaporated to the atmosphere. Drip Irrigation involves frequent application of water, even on a daily basis. Therefore water requirement of the plant per day is equivalent to the rate of potential evapotranspiration (PET) per day. Evapo-transpiration is the quantity of water transpired by the plants plus quantity of water retained in the plant tissue and water evaporated from the soil surface. The values for reference evapo-transpiration are normally available for particular area at the nearest meteorological observatory.

Water requirement can be calculated as:
WR (Liters per day) $=\mathrm{ET} \times \mathrm{Kc} \times \mathrm{Cp} \times$ Area, where
ET is evapo-transpiration (mm per day)
K K is crop factor,
Cp is canopy factor,
Area in sq. meter.
If specific crop factor values are not available then it can be assumed as one.
Canopy factor is the percentage area covered by plant canopy (foliage). It varies as per the growth stage of the plant.

Area incase of orchard plant is the multiplication of the distance from plant to plant (m) and distance from row to row (m). Incase of row plantation unit area can be taken to calculate water requirement.

Example: C alculate Peak water requirement for grapes planted at the spacing of 2 m by 2 m . Assume peak ET for the area as 6 mm per day, crop factor for grape 0.8 and canopy factor 0.8.

$$
\begin{aligned}
\text { Peak water requirement per day } & =6 \times 0.8 \times 0.8 \times 2 \times 2 \\
& =15.36 \text { liters per day per plant }
\end{aligned}
$$

It is called as peak water requirement because it is calculated on the basis of highest rate of evapotranspiration which normally occurs in high temperature and windy conditions in summer. H owever daily water requirement will depend on daily rate of evapo-transpiration. It will be less during winters and more in summer. The drip system has constant discharge at the given pressure. Therefore operating time can be varied to provide required amount of water depending on the season.

6.5 O perating Time / Irrigation Scheduling :

O perating (Irrigation) time is the duration for which the irrigation system is run to provide required amount of water for the plants. It can be calculated as following:

Water requirement (liters per day)
Irrigation time (hrs / day) =
Application rate (liters per hour)
Example: 1
Calculate Irrigation time for a papaya tree with daily water requirement of 10 liters per day per plant and provided with microtube system with discharge rate of 4 liters per hour.

10

Irrigation time (hrs $/$ day $)=\quad-\boldsymbol{=} 2.5 \mathrm{hrs} /$ day
4
Example: 2
C alculate Irrigation time for a vegetable plot of size 100 sq. meter with daily water requirement of 400 liters per day and provided with microtube system with discharge rate of 200 liters per hour.

400
Irrigation time (hrs $/$ day) $=\quad \boldsymbol{-} \mathbf{-} \mathbf{2} \mathrm{hrs} /$ day
200

6.6 Selection of emitter:

Emitter is the most important part of a drip system through which water is delivered at desired rate to the plant and uniformity of water application is maintained all over the irrigated area. Therefore an emitter should match particular conditions existing at the field viz. type of crop, spacing of the plants, terrain, water requirement, water quality, operating time, pressure head etc. Some of the criteria that can be applied to the selection of dripper are given below:

1. Reliability against clogging and malfunctioning.
2. Emission Uniformity

3. Simple to install and maintain.
4. Permissible variation of pressure head (Pressure compensating incase of undulated terrain).
5. Percentage area wetted.
6. Flow rate
7. Operating pressure.
8. Cost

Following table shows application of major type of emitters to different crops.

Type of Emitter	D ischarge Range, (Liter/hour)	0 perating Pressure head, (M eter)	Application to type of crops, terrain etc.
M icro-tube, Baffle, O nline Inline D rippers.	1 LPH to 10 LPH	1 m to 10 m	Vegetable, Fruit and Row crops on flat terrain.
D ripper - self / pressure compensating (online, inline etc.)	1 LPH to 10 LPH	10 m to 30 m	Vegetable, Fruit and Row crops on undulated terrain.
Line source tube / T hin	1 LPH per meter to walled Tape	1 m to 10 m 5 LPH per meter	Long Row crops (sugarcane, vegetables, pulses etc.)
M icro Sprinkler / M icro Jet	20 LPH to 100 LPH	5 m to 30 m	Vegetable, nursery.
M ini Sprinkler	500 LPH to 1000 LPH	10 m to 30 m	Closely spaced crops.

6.7 Design of Lateral:

In most of the drip systems LLDPE laterals of 12 mm and 16 mm size are used. For AM IT micro tube system 12 mm LLD PE lateral is used and for Baffle hole drip system 8 mm PVC lateral is used. There are some important points to be considered while designing the lateral pipe as given below:

1. If the average slope of the field is less than 3% in the direction of the lateral, it can be used at equal length on both sides of sub main pipe.
2. If the slope of the field is more than 3% laterals should be used along the contours as far as possible.
3. If it is not possible to use laterals along the contours on sloping surface due to plant spacing etc., the length of laterals on downside of the sub main should be more than laterals on the upside. For higher slopes laterals only on downside should be used.

It is important to find out how long a lateral can be used on each side of the sub main so that variation in discharge due to friction loss is within allowable limit. The desirable limit for emitter flow variation is less than 10% but depending on the crop, variation of 10 to 20% is acceptable. For 10% variation in discharge, approx. 20 \% variation in the available head is acceptable. Accordingly allowable length of lateral can be calculated from flow equations like H azen-W illiams (using $\mathrm{C}=150$) as given below:

$5.35 Q^{1.852} \mathrm{~L}$	where
$\mathrm{H}_{1}=---H_{1}$ is pressure loss due to friction (m),	
$\mathrm{D}^{4.871}$	Q is total discharge of lateral (lps),
L is length of lateral $(\mathrm{m}) \& D$ is inside diameter (cm).	

To cover range of emitter discharge and spacing, a parameter Specific Discharge Rate (SDR) is used. It is actually flow per unit length of the lateral. It can be calculated as given below.

	Emitter flow rate (lph)	Discharge from lateral (lph)
Lateral SD R $=$	$--------------=$	
$(\mathrm{lph} / \mathrm{m})$	Spacing between two emitters (m)	--------------------------

Following tables gives allowable length for $8 \mathrm{~mm}, 12 \mathrm{~mm}, 14 \mathrm{~mm} \& 16 \mathrm{~mm}$ pipe sizes at different pressure head and lateral flow rates.

Allowable Length of 8 mm and 12 mm Pipes (m):

Lateral SD R (lph/m)	Available Pressure H ead											
	1 m			2 m		3 m		5 m		10 m		15 m
	8 mm	12 mm	8 mm	12 mm	8 mm	12 mm	8 mm	12 mm	8 mm	12 mm	8 mm	12 mm
1.00	18	30	20	35	25	40	35	70	50	100	60	120
2.00	15	25	16	30	22	35	25	50	35	60	45	70
4.00 *	12	20	15	25	18	30	20	35	25	40	35	50
$6.00{ }^{\wedge}$	06	12	10	15	14	20	15	25	20	30	25	35
10.00	04	08	08	12	10	15	10	18	15	20	20	25
15.00	03	06	04	07	05	08	07	10	10	15	12	18
20.00	02	04	03	05	03	06	05	08	06	10	08	15

(* For BH D Kits. ${ }^{\wedge}$ for Bucket Kit \& Drum Kit)

Allowable Length of 14 mm and 16 mm Pipes (m):

Lateral SD R (lph/m)	Available Pressure H ead											
	1 m			2 m		3 m		5 m		10 m		15 m
	$\begin{aligned} & 14 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~mm} \end{aligned}$
1.00	40	50	45	60	60	80	80	100	120	150	150	180
2.00	30	40	35	50	45	60	60	80	80	100	100	120
4.00	25	30	30	40	35	40	40	50	50	60	60	75
6.00 ^	15	20	20	25	25	30	30	40	40	50	50	60
10.00	10	12	12	15	15	20	20	25	25	35	35	45
15.00	08	10	10	12	12	15	15	20	20	30	30	35
20.00 *	04	08	05	10	10	12	10	15	15	20	20	25
25.00	02	04	02	04	05	08	08	10	10	15	15	20

(${ }^{\wedge}$ for HGK, and * for BHD Kits \& VGK, KGK)

Note:

Above figures are for flat land and adjustment has to be made in length of pipe depending on slope, i.e. Shorter laterals for up slope and longer lateral for down slope so that total pressure variation is within given limit.

6.8 D esign of Sub main :

Sub main pipe is designed in a similar way like lateral because it is also a perforated pipe like lateral and discharge in it reduces with respect to length of the pipe. Therefore limitation of 20% pressure variation to calculate the length can be used. Depending on flow rate various sizes of PVC / HDPE / LLDPE pipes are used as sub main in micro irrigation system. For micro tube AM IT Kits 16 mm LLDPE pipe is used as sub main and for baffle hole drip 14 mm PVC flexible pipe is used. Allowable length at different pressure head and flow rates for $14 \mathrm{~mm} \& 16 \mathrm{~mm}$ is given in above table and for $20 \mathrm{~mm}, 25 \mathrm{~mm}, 32 \mathrm{~mm}$ and 40 mm is given in tables below.

Lateral SDR (lph/m) x Length of the lateral (m)
Sub main SD R $(\mathrm{lph} / \mathrm{m})=$
Spacing between two laterals (m)

Total D ischarge from the Sub main (lph)

Length of the sub main (m)

Allowable Length of 20 mm \& 25 mm Pipes (m):

Allowable Length of 32 mm \& 40 mm Pipes (m):

Lateral SDR (Iph/m)	Available Pressure H ead											
	1 m			2 m		3 m		5 m		10 m		15 m
	32 mm	40 mm	$\begin{aligned} & 32 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{~mm} \end{aligned}$	32 mm	$\begin{aligned} & 40 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{~mm} \end{aligned}$	32 mm	$\begin{aligned} & 40 \\ & \mathrm{~mm} \end{aligned}$	32 mm	$\begin{aligned} & 40 \\ & \mathrm{~mm} \end{aligned}$
20	40	60	50	50	60	75	70	90	80	120	100	150
40	25	30	30	40	40	50	50	60	60	90	70	120
80	15	20	20	30	25	30	30	45	40	60	50	80
150	07	10	10	15	15	20	20	30	25	40	30	50
300		04		08		15		20		25		30

Note:

Above figures are for flat land and adjustment has to be made in length of pipe depending on slope, i.e. Shorter sub main for up slope and longer sub main for down slope so that total pressure variation is within given limit.

6.9 Design of M ain Line:

Design of mainline involves determining diameter of pipe and class / thickness. It depends on flow rate, operating pressure, topography. As per irrigation scheduling of the sub main units, mainline flow can be determined by selecting sub mains operating at a time. The mainline size is selected so that allowable pressure variation due to friction loss is within limit for the economic pipe sizing. Frictional head loss can be calculated using H azen-W illiams equation as given below:

$15.27 \mathrm{Q}^{\text {1.852 }} \mathrm{L}$	where	H_{1} is pressure loss due to friction (m),
$\mathrm{H}_{\mathrm{I}}=--------$	Q is total discharge in the pipe (lps),	
$\mathrm{D}^{4.871}$		L is length of pipe $(\mathrm{m}) \& \mathrm{D}$ is inside diameter (cm).

Following table gives mainline sizes for different flow range and resulting frictional head loss in 10 m length of pipe.

Pipe Size (O ut side diametermm)	16	20	25	32	40	50	63	75
Flow Range (Ips)	$\begin{aligned} & 0.01 \text { to } \\ & 0.07 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.07 \\ \text { to } 0.15 \end{array}$	$\begin{aligned} & 0.15 \\ & \text { to } 0.25 \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { to } 0.50 \end{aligned}$	$\begin{aligned} & 0.50 \\ & \text { to } 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & \text { to } 2.00 \end{aligned}$	$\begin{aligned} & 2.00 \\ & \text { to } 3.50 \end{aligned}$	$\begin{aligned} & 3.50 \\ & \text { to } 5.00 \end{aligned}$
Friction Loss (m per 10 m of pipe length)	$\begin{aligned} & 0.01 \\ & \text { to } 0.35 \end{aligned}$	$\begin{aligned} & 0.10 \\ & \text { to } 0.38 \end{aligned}$	$\begin{aligned} & 0.13 \\ & \text { to } 0.32 \end{aligned}$	$\begin{aligned} & 0.10 \text { to } \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.10 \text { to } \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.11 \text { to } \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.11 \\ & \text { to } 0.32 \end{aligned}$	$\begin{aligned} & 0.13 \text { to } \\ & 0.30 \end{aligned}$

6.10 Selection of Filter:

Filtration requirement depends on size of flow path in the emitter, quality of water and flow in the mainline. Screen filter is used in case of AM IT Kits as water is stored in a storage tank. For large system, depending on water quality, different filters or combination of filters can be used. For large flow requirements filters can be connected in parallel using manifolds so that pressure loss across the filter is within limit. Four types of filters are mainly available in different sizes (filtration area) as described below,

1. Screen (M esh) Filter : It is made of plastic or metal and different sizes are available for different flow rates from $1 \mathrm{m3} / \mathrm{hr}$ to $40 \mathrm{~m} 3 / \mathrm{hr}$. It is used for normal water with light inorganic impurities. It is called surface filter.
2. Sand (M edia) Filter : It is made of M.S. metal and available in different sizes similar to screen filter. It is used for water with suspended particles and organic impurities like algae. Either sand or gravel can be used as media for filtration. It is also called as depth filter. It is used in series with the screen filter.
3. Disc Filter: It is made of plastic and has round discs with micro water path, staked together in a cylinder so that impurities cannot pass through the discs. It gives combination of surface and depth filters.
4. H ydro-cyclone: It is made of M.S. metal and has a conical shaped cylinder to give centrifugal action to the flow of water so that heavy impurities settle down. It is used incase of sandy water along with the screen filter.

6.11 Selection of Pump / Total H ead Requirement:

H ead (pressure) required at the inlet of the mainline or filter is given below:

$$
\begin{array}{ll}
\text { H ead }(m)= & \text { O perating pressure }(m)+M \text { ainline friction loss }(m)+\text { fittings loss }(m) \\
& + \text { Filter loss }(m)+(-) \text { Elevation difference }(m) .
\end{array}
$$

Incase of centrifugal pump total head requirement is as given below:

$$
\begin{array}{ll}
\text { Total } H \text { ead }(m)= & \text { Suction head }(m)+\text { D elivery head }(m)+0 \text { perating pressure }(m)+ \\
& \text { M ainline friction loss }(m)+\text { fittings loss }(m)+\text { Filter loss }(m)+(-) \\
& \text { Elevation difference }(m) .
\end{array}
$$

H orse Power Requirement:
Flow (lps) x Total H ead (m)
H orse Power (H P) =
$75 \times$ M otor efficiency x Pump efficiency
Efficiency of the motor and pump differ for different model and make. Approximately motor efficiency can be taken as 80% and pump efficiency as 75% for mono-block pump. H owever in order to procure pump from the market, required flow and total head should be mentioned to the supplier / manufacturer so that he can select suitable model from the same or lower horse power category.

INSTALLATION \& COMMISSTONING

Installation of AM IT Kits is very simple process as shown in the installation diagrams in the annexes. It can be divided in to three stages viz.

1. Installing water source (bucket, barrel, tank, pump etc.).
2. Laying of pipes and emitters / micro-tubes.
3. Commissioning

If there is no overhead tank then water source in terms of bucket, barrel, tank etc. has to be organized first locally. It has to be installed at an height above ground level on a stable support / platform (minimum 1 meter high) depending on the system requirement. The drip then can be connected to the water source. M icrosprinkler and overhead sprinkler kits can be directly connected with equival ent discharge outlet of a pump or water supply system. M ake sure that control valve and filter is connected to the system through mainline.

Lateral pipes are laid on the ground in straight line or along the plant rows. Emitters / micro-tubes are pre fixed on the lateral. They are placed at equal spacing so that plants get uniform amount of water. Stakes are used incase of micro-tube and micro-sprinklers to place them properly. Care should be taken so that dirt, sand etc. does not enter in to pipes while making connections.

Before operating the system end caps at the end of laterals / sub main are released so that if there is dirt in the pipes it is washed away and air is also driven out. O pen the control valve and let the water flow freely through the pipes for some time (flush the system). Then close the end caps and ensure that water is coming out from each emitter.

In general following activities are involved in the installation of AM IT System.

1. Study installation sketch.
2. Give layout for water tank / filter platform and trenches for pipes if required.
3. Check components in the kit / material at site as per the checklist / BOQ .
4. Install water storage tank, filter on the platform / stable support.
5. Connect filter to the water source / pump and the mainline.
6. Lying of mainline, sub main and lateral pipes.
7. Covering pipe trenches if required.
8. Placement / fixing of emitters.
9. Release all end caps / flush valves and open all control valves.
10. Flush the system.
11. Check pressure and discharge and ensure all emitters are working.
12. O perate as per schedule.

MAINTENANCE \& TROUBLESH OOTING

The biggest problem of any drip system is clogging of emitters. AM IT Kits use very simple emitters, which are less prone to clogging due to wider flow path. Therefore it requires less maintenance as compared to other drippers. H owever periodic and preventive maintenance is essential for smooth working of the system. Following general checks can be carried out periodically depending on the local condition and water quality.

1. Clogging of emitters/ wetting pattern.
2. Placement of emitters / micro-tubes.
3. Leakages in pipes, valves, filter, fittings etc.
4. Flushing \& cleaning of filter by opening and cleaning the screen.
5. Flushing of sub main \& laterals by releasing the end caps.

Apart from physical impurities that can be separated by using screen filter, there are dissolved chemical (mainly salts) impurities and also biological impurities like algae, bacteria etc. present in some water source. If the dissolved salts are in higher concentration, they can accumulate and clog the emitters. Then hydrochloric acid can be applied to the emitters to flush the salts. Incase of clogging by bacteria or algae, chlorine treatment in the form of bleaching powder (2 mg per liter) can be given to clean the emitters and inhibit slime growth.

Some common problems faced by micro irrigation system, causes and trouble shooting required is given in the following table.

Problem	Cause	Troubleshooting
Micro-tubel Emitter not delivering water.	Clogging due to impurities in water or air bubble in micro-tube	1. Take out micro-tube from lateral pipe and shake it or blow it so that dirt/air comes out. Incase of other emitter, open it and clean it with needle so that dirt is removed. Then fix the emitter and check it's working. 2. Check the filter screen and gasket for any possible leakage and if required replace them.
Leakage in lateral, sub- main or main pipe	Cut in pipe due to mechanicaldamage or rodent etc.	Cut the pipe at the place of damage and connect it by using joiner / connector. For large diameter pipes, if joiners are not available then service saddle also can be used.
Leakage in fittings of lateral pipe.	Expanded pipe end due to frequent use	Cut the pipe end for the expanded portion and insert the fitting in it again. If the fitting is too loose for the pipe diameter it can be adjusted by heating it.
Reduced flow of water from emitter.	1. Chocked filter 2. Pipe leakage 3. O pen end cap	1. Clean the filter screen. 2. Repair pipe leakage as mentioned above. 3. Fix the end.

FREOUENTLY ASKED OUESTIONS ON AMIT

Questions	Answers
Water requirement incase of drip irrigation	It will depend on climate, soil, crop etc. Approximately it can be equal to Evapo-transpiration multiplied by canopy factor or percent wetted area.
Expansion / Customization of AM IT Kit	Lateral pipes can be increased in length as shown in table 5.1. Alternately additional kits can be attached to the same water source.
Lhe life of most plastic components is minimum five years. It	
can last up to ten years if maintained properly.	

$\left.\begin{array}{ll}\text { Pressure head required for AM IT Kits } & \begin{array}{l}\text { The pressure head or height of water source will depend on } \\ \text { size of area covered or distance of remotest dripper from the } \\ \text { source. Approximately } 1 \mathrm{~m} \text { for } 100 \text { sq.m., } 2 \mathrm{~m} \text { for } 500 \text { sq.m. } \\ \text { and } 3 \mathrm{~m} \text { for } 1000 \text { sq.m. }\end{array} \\ \text { U se of AM IT Kits on undulated area } & \begin{array}{l}\text { If there are terraces formed on hill slopes or undulated area, } \\ \text { one or more drip kit should cover single terrace, which is } \\ \text { evenly leveled. Separate kit should be used for terrace on } \\ \text { upward or downward side. O perate one terrace at a time so }\end{array} \\ \text { that water is spread uniformly. If more terraces have to be } \\ \text { irrigated at a time then flow for downward terraces should be } \\ \text { decreased with the help of valve or orifice so that equal }\end{array}\right\}$

APPENDIX

10.1 G lossary:

Abbreviation	D escription
AM IT	Affordable M icro Irrigation Technology
IDE	International D evelopment Enterprises
MIS	M icro Irrigation System
M DK	M icro-tube D rip Kit
BDK	Baffle D rip Kit
M SK	M icro-Sprinkler Kit
ET	Evapo-transpiration
hp	H orse Power
LPH	Liter per Hour
LPS	Liter per Second
LPH per meter	Liter per hour per meter
ha	Hector
ft	Feet
inch	Inches
mm	M illimeter
cm	Centimeter
m	M eter
Sq.m	Square meter
PVC	Polyvinyl chloride
PE	Polyethylene
HDPE	High D ensity Polyethylene
LD PE	Low Density Polyethylene
LLD PE	Linear Low D ensity Polyethylene

REFERENCES:

Keller Jack, Blisner Ron, 2000. Sprinkler and TrickleI rrigation, ISBN : 1-930665-19-9, the Blackburn Press, Caldwell, N ew Jersey 07006

Adhikari D epak, 2000. Simplified and Low Cost D rip Irrigation M anual, International D evelopment Enterprises, Kathmandu, Nepal.

Suryawanshi Sudarshan, 2000. AffordableM icro Irrigation Technology, International D evelopment Enterprises, D elhi India.

Proceedings of D rip and Sprinkler Workshop 1994, held at Jalgaon (M .S), India.
Proceedings of M icro I rrigation C ongress 1995, held at Orlando, U SA.

